a2 United States Patent

Binder et al.

US009117254B2

US 9,117,254 B2
Aug. 25,2015

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR PERFORMING
RAY TRACING

(71) Applicant: NVIDIA Corporation, Santa Clara, CA
(US)

(72) Inventors: Nikolaus Binder, Berlin (DE); Carsten
Alexander Wachter, Berlin (DE);
Alexander Keller, Berlin (DE)

(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 73 days.

(21) Appl. No.: 13/685,630

(22) Filed: Now. 26, 2012
(65) Prior Publication Data
US 2014/0028687 Al Jan. 30, 2014

Related U.S. Application Data
(60) Provisional application No. 61/675,215, filed on Jul.

24, 2012.
(51) Int.CL
GO6T 15/00 (2011.01)
GO6T 1/00 (2006.01)
GO6T 15/06 (2011.01)
GOGF 12/08 (2006.01)
(52) US.CL
CPC oo GO6T 1/00 (2013.01); GO6T 15/005

(2013.01); GO6T 15/06 (2013.01); GO6F
12/0875 (2013.01); GO6F 2212/455 (2013.01)

(58) Field of Classification Search

CPC ... GO6T 1/00; GO6T 15/005; GO6T 15/06;
GOG6F 12/0875
USPC ittt 345/501, 419
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

7,133,041 B2* 11/2006 Kaufmanetal. 345/419
7,310,098 B2 12/2007 Ohba
7,471,291 B2* 12/2008 Kaufmanetal. 345/424

7,659,894 B2 *
8,018,453 B2*

2/2010 Kelleretal.

9/2011 Fowleretal. ...
8,234,234 B2* 7/2012 Shearer
8,248,416 B2* 82012 Kelleretal. 345/426
8,284,195 B2* 10/2012 Brownetal. 345/421
8,339,398 B2* 12/2012 Shearercccooevvvnnnn 345/426

2004/0066384 Al 4/2004 Ohba

2008/0079731 Al 4/2008 Shearer

2009/0225081 Al 9/2009 Keller et al.

... 345/426
.. 345/419
706/52

FOREIGN PATENT DOCUMENTS

™ 200405979 A 4/2004
OTHER PUBLICATIONS

Mora, B., “Naive Ray-Tracing: A Divide-And-Conquer Approach,”

ACM Transactions on Graphics, vol. 30, Oct. 2011, pp. 117:1-
117:12.

(Continued)

Primary Examiner — Phu K Nguyen
(74) Attorney, Agent, or Firm — Zilka-Kotab, PC
57 ABSTRACT

A system, method, and computer program product are pro-
vided for performing ray tracing. In use, ray tracing is per-
formed utilizing a divide and conquer method, where the
divide and conquer method is associated with a cache.

15 Claims, 3 Drawing Sheets

qm

202

IDENTIFYING A SPACE INCLUDING A PLURALITY OF f-\»_)
GEOMETRIC PRIMITIVES

204

PERFORMING DIVIDE AND CONQUER RAY TRACING f\)
WITHIN THE SPACE IN ASSOCIATION WITH THE
PLURALITY OF GEOMETRIC PRIMITIVES, UTILIZING
A PARTITION CACHE MEMORY

US 9,117,254 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Frohlich, B., “Ray Tracing mit Strahlenbiindeln,” 1993, pp. 1-121.
Afra, A., “Incoherent Ray Tracing without Acceleration Structures,”
Eurographics, 2012, pp. 1-4.

Wichter, C. et al., “Terminating Spatial Hierarchies by a Priori
Bounding Memory,” 2007, pp. 1-6.

Eisemann, M. et al., “Geometry Presorting for Implicit Object Space
Partitioning,” Furographics Symposium, vol. 31, 2012, pp. 1-11.
Bikker, J., “Improving Data Locality for Efficient In-Core Path Trac-
ing,” Computer Graphics Forum, 2012, pp. 1-12.

>

Karia, R., “Load Balancing of Parallel Volume Rendering with Scat-
tered Decomposition,” IEEE, 1994, pp. 252-258.

Ma, K-L. et al., “Parallel Volume Visualization On Workstations,”
Comput. & Graphics, vol. 17, No. 1, 1993, pp. 31-37.

Keller, A. et al., “Efficient ray tracing without auxiliary acceleration
data structure,” In Proc. of High Performance Graphics 2011, p. 1.
Office Action from Taiwan Patent Application No. 102126499, dated
Dec. 5,2014.

Examination Report from German Patent Application No. 10 2013
213 561.0, dated Jun. 21, 2014.

* cited by examiner

U.S. Patent Aug. 25, 2015 Sheet 1 of 3 US 9,117,254 B2

102

PERFORMING RAY TRACING UTHIZING A DIVIDE (\)
AND CONQUER METHOD, WHEREIN THE DIVIDE AND
CONQUER METHOD 1S ASSOCIATED WITH A CACHE

FIGURE 1

U.S. Patent Aug. 25, 2015 Sheet 2 of 3 US 9,117,254 B2

202

IDENTIFYING A SPACE INCLUDING A PLURALITY OF (’&_,,}
GEOMETRIC PRIMITIVES

204
PERFORMING DIVIDE AND CONQUER RAY TRACING (”\)

WITHIN THE SPACE IN ASSOCIATION WITH THE
PLURALITY OF GEOMETRIC PRIMITIVES, UTILIZING
A PARTITION CACHE MEMORY

FIGURE 2

U.S. Patent Aug. 25, 2015 Sheet 3 of 3 US 9,117,254 B2

300

CENTRAL |
PROCESSOR ||

301

MAIN
MEMORY

304

| SECONDARY ||
STORAGE ||

310

GRAPHICS
PROCESSOR

DISPLAY

302

308

FIGURE 3

US 9,117,254 B2

1
SYSTEM, METHOD, AND COMPUTER
PROGRAM PRODUCT FOR PERFORMING
RAY TRACING

CLAIM OF PRIORITY

This application claims the benefit of U.S. Provisional
Application No. 61/675,215, filed Jul. 24, 2012, the entire
contents of which are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to graphics processing, and
more particularly to performing ray tracing.

BACKGROUND

Image generation utilizing ray tracing has become an
important area of computer graphics. For example, ray trac-
ing may be used to produce synthetic images with a high
degree of visual realism. However, current techniques for
performing ray tracing have been associated with various
limitations.

For example, current methods for performing ray tracing
may be inefficient in that such methods may perform redun-
dant actions during ray tracing computations. There is thus a
need for addressing these and/or other issues associated with
the prior art.

SUMMARY

A system, method, and computer program product are
provided for performing ray tracing. In use, ray tracing is
performed utilizing a divide and conquer method, where the
divide and conquer method is associated with a cache.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a method for performing ray tracing, in
accordance with one embodiment.

FIG. 2 shows a method for performing divide and conquer
ray tracing, in accordance with another embodiment.

FIG. 3 illustrates an exemplary system in which the various
architecture and/or functionality of the various previous
embodiments may be implemented.

DEFAME DESCRIPTION

FIG. 1 shows a method 100 for performing ray tracing, in
accordance with one embodiment. As shown in operation
102, ray tracing is performed utilizing a divide and conquer
method, where the divide and conquer method is associated
with a cache. In one embodiment, the ray tracing may include
path tracing. For example, the ray tracing may include tracing
a path (e.g., a light path, etc.) through a space (e.g., a scene,
etc.), where the space includes one or more objects. Inanother
embodiment, the ray tracing may include simulating one or
more effects of encounters (e.g., intersections, etc.) of the
path with one or more of the objects.

Additionally, in one embodiment, performing ray tracing
utilizing the divide and conquer method may include per-
forming partitioning. For example, performing ray tracing
utilizing the divide and conquer method may include parti-
tioning a space (e.g., the space in which the ray tracing is
being performed, etc.). In another example, performing ray
tracing utilizing the divide and conquer method may include

10

15

20

25

30

35

40

45

50

55

60

65

2
partitioning an object list (e.g., a list of objects (e.g., geomet-
ric primitives, etc.) within the space, etc.).

Also, in one embodiment, the partitioning may be per-
formed utilizing one or more methods. For example, the
partitioning may be performed utilizing one or more of a
surfaces area heuristic, a median split, a split by a global
heuristic, and a split by a selected plane defined by an offset
and a normal. In another embodiment, the partitioning may
create a plurality of partitions (e.g., space partitions, object
list partitions, etc.). In yet another embodiment, performing
ray tracing utilizing the divide and conquer method may
include culling one or more of the partitions (e.g., removing
one or more of the partitions from a particular ray tracing
operation).

Further, in one embodiment, performing ray tracing utiliz-
ing the divide and conquer method may include performing
partitioning in a recursive manner. For example, performing
ray tracing utilizing the divide and conquer method may
include recursively subdividing the space, recursively parti-
tioning objects within the space, etc. In another example,
performing ray tracing utilizing the divide and conquer
method may include tracing a selected number of rays
through a selected number of objects by recursively partition-
ing one or more objects within a space to create one or more
partitions of objects, and culling away the one or more parti-
tions of objects from rays. In this way, an amount of intersec-
tion testing (e.g., testing of intersections between the ray and
one or more objects, etc.) may be reduced (e.g., by perform-
ing hierarchical culling, etc.). In the same way, hierarchical
culling may reduce the intersection testing by pruning a hier-
archical traversal during recursively partitioning space.

Further still, in one embodiment, the cache may include
one or more portions of memory within a computing system.
For example, the cache may include one or more portions of
memory located on a central processing unit (CPU) of the
computing system, one or more portions of memory located
on a graphics processing unit (GPU) of the computing sys-
tem, etc.

Also, in one embodiment, information obtained during the
ray tracing utilizing the divide and conquer method may be
stored in the cache. For example, the cache may store parti-
tioning information (e.g., partitioning results, etc.) associated
with the divide and conquer method. In another example, a
fixed amount of partition cache memory may be allocated,
and such partition cache memory may store one or more of the
plurality of partitions created by the partitioning during the
divide and conquer method. In this way, partitioning results
obtained as a result of performing ray tracing utilizing the
divide and conquer method may be stored in the cache instead
of'storing a complete explicit hierarchical auxiliary accelera-
tion data structure.

In addition, in one embodiment, information obtained dur-
ing the ray tracing utilizing the divide and conquer method
may be stored in the cache by modifying one or more portions
of an algorithm associated with the divide and conquer
method (e.g., a divide and conquer algorithm). In another
embodiment, the cache may store a portion of a hierarchy
associated with the performance of the ray tracing. For
example, the cache may store one or more levels (e.g., a
predetermined number oftop levels, etc.) of a full hierarchy of
partitions created by the partitioning.

Furthermore, in one embodiment, the cache may store one
or more partitions based on recalculation times associated
with the partitions. For example, each partition may be asso-
ciated with a priority that is based on an amount of work
required to perform a recalculation of that partition within the
divide and conquer method. In another example, a predeter-

US 9,117,254 B2

3

mined number of partitions with the highest priority may be
stored within the cache. In this way, the cache may store the
partitions that are associated with the highest recalculation
times.

Further still, in one embodiment, the ray tracing utilizing
the divide and conquer method may be applied hierarchically.
For example, the ray tracing may be performed utilizing a
directed acyclic scene graph. In another embodiment, a plu-
rality of caches may be associated with the multiple refer-
enced nodes in the directed acyclic scene graph, such that
each multiple referenced node in the directed acyclic scene
graph has its own distinct cache.

Also, in one embodiment, the ray tracing utilizing the
divide and conquer method may include hierarchical occlu-
sion culling. For example, the divide and conquer method
may be used for hierarchical occlusion culling during a ras-
terization. In another embodiment, a traversal order (e.g., an
order in which a set of rays and a set of objects within the
space are processed, etc.) may be determined in association
with the ray tracing utilizing the divide and conquer method.
For example, the traversal order may be determined by one or
more of ray democracy, averaged ray directions, and quan-
tized ray directions.

More illustrative information will now be set forth regard-
ing various optional architectures and features with which the
foregoing framework may or may not be implemented, per
the desires of the user. It should be strongly noted that the
following information is set forth for illustrative purposes and
should not be construed as limiting in any manner. Any of the
following features may be optionally incorporated with or
without the exclusion of other features described.

FIG. 2 shows a method 200 for performing divide and
conquer ray tracing, in accordance with another embodiment.
As an option, the method 200 may be carried out in the
context of the functionality of FIG. 1. Of course, however, the
method 200 may be implemented in any desired environment.
It should also be noted that the aforementioned definitions
may apply during the present description.

As shown in operation 202, a space including a plurality of
geometric primitives is identified. In one embodiment, the
space may include a scene to be rendered as an image by
simulating a virtual camera. In another embodiment, the
scene may include geometric primitives, which may include
any object located within the space (e.g., geometric shapes,
etc.).

Additionally, as shown in operation 204, divide and con-
quer ray tracing is performed within the space in association
with the plurality of geometric primitives, utilizing a partition
cache memory. In one embodiment, performing the divide
and conquer ray tracing may include reordering a set of rays
and a set of the geometric primitives utilizing a simultaneous
hierarchical traversal while implicitly keeping track of the
hierarchy. In another embodiment, the divide and conquer ray
tracing may not store an acceleration data structure (e.g., such
data structure may be implicit, etc.). See, for example, US
Patent Application, US 2009/0225081 and “Efficient ray trac-
ing without auxiliary acceleration data structure” (A. Keller
et al., Poster, High Performance Graphics, 2011), which
describe examples of divide and conquer ray tracing and are
hereby incorporated by reference in their entirety.

Further, in one exemplary case of US Patent Application,
US 2009/0225081 and “Efficient ray tracing without auxil-
iary acceleration data structure” (A. Keller et al., Poster, High
Performance Graphics, 2011), performing the divide and
conquer ray tracing may include performing spatial partition-
ing (e.g., recursive spatial partitioning, recursive subdivision,
etc.). Also see, for example, “Naive ray-tracing: A divide-

10

15

20

25

30

35

40

45

50

55

60

65

4

and-conquer approach” (B. Mora, ACM Trans. Graph., 30(5):
117:1-117:12, October 2011) and “Incoherent ray tracing
without acceleration structures” (A. Afra, EuroGraphics
Short Paper, 2012), which describe exemplary implementa-
tions of spatial partitioning and are hereby incorporated by
reference in their entirety.

Further still, in one embodiment, while divide and conquer
ray tracing may be cache oblivious, benefits from cache per-
formance may be obtained by reordering data. In another
embodiment, redundant computation in the ray tracing may
be addressed utilizing the partition cache memory. For
example, a fixed amount of cache memory may be allocated
to create the partition cache memory, and such partition cache
memory may be used to cache information obtained during
the performance of the divide and conquer ray tracing. For
example, the partition cache memory may be used to cache
information during the performance of recursive subdivision.

Additionally, see, for example, “Geometry presorting for
implicit object space partitioning” (M. Eisemann et al., Com-
puter Graphics Forum (Proc. of Eurographics Symposium on
Rendering (EGSR)), 31(4), June 2012), “Ray Tracing Mit
Strahlbiindeln” (B. Frohlich, PhD thesis, Naturwissen-
schaftliche Fakultét der Technischen Universitéit Carolo-Wil-
helmina zu Braunschweig, 1993), “Improving data locality
for efficient in-core path tracing” (J. Bikker, Computer
Graphics Forum, Volume 31, Issue 6, pages 1936-1947, Sep-
tember 2012), and “Terminating spatial hierarchies by a priori
bounding memory” (C. Wéchter et al., In Proceedings of the
2007 IEEE Symposium on Interactive Ray Tracing, RT *07,
pages 41-46, Washington, D.C., USA, 2007), which are
hereby incorporated by reference in their entirety.

Also, in one embodiment, the partition cache memory may
be implemented within one or more methods associated with
the performance of the divide and conquer ray tracing. For
example, the partition cache memory may be implemented by
modifying a divide and conquer method. Table 1 illustrates an
exemplary divide and conquer method that incorporates a
partition cache memory. Of course, it should be noted that the
method shown in Table 1 is set forth for illustrative purposes
only, and thus should not be construed as limiting in any
manner.

TABLE 1

intersect(start, end, active_rays, box, depth, node_id) {
/// litter inactive rays and also store sum of active ray directions
{ active_rays, sum_dir } < cull_rays(box, actve_rays);
if (terminate(start, end, active_rays, depth))
intersect_all(start, end, active_rays);
else {
if (is_in_cache(node_id, end - start)) {
{mid, axis, left_box, right_box} <
get_from_cache(node_id);
}else {
axis < get_axis(depth, box); // initially proposed axis
{mid, axis, left_box, right_box}
< partition(start, end, active_rays, box, axis);
insert_info_cache(node_id, {mid, axis, left_box,
right_box}, end - start);

if (termination_cheaper(start, mid, end, box, left_box,
right_box))
intersect_all(start, end, active_rays);
else {
if (sum_dir(axis) > 0) {
intersect(start, mid, active_rays,
left_box, depth + 1, 2 * node_id+1);
intersect(mid, end, active_rays, right_box,
depth + 1, 2 * node_id+2);
}else {

intersect(mid, end, active_rays, right_box,

US 9,117,254 B2

5
TABLE 1-continued

depth + 1, 2*node_id+2);
intersect(start, mid, active_rays, left_box,
depth + 1, 2*node_id+1);

In this way, an overall run time complexity of the divide
and conquer method may remain the same, and a constant
may be reduced (e.g., for data sets much larger than processor
caches or main memory, etc.). In one embodiment, based on
cache obliviousness and the partition cache memory, more
costly partitioning heuristics may be amortized. Similar to
precomputed acceleration structures, SAH criteria for the
determination of split planes during partitioning may
improve overall performance, but as opposed to precomputed
structures, SAH evaluation may be performance critical dur-
ing traversal and thus may be preferred only in partitions with
a large amount of primitives and rays. See, for example,
“Incoherent ray tracing without acceleration structures,” (A.
Afra, BuroGraphics Short Paper, 2012), which is hereby
incorporated by reference in its entirety. In another embodi-
ment, if partitioning fails or the computational cost for termi-
nation is considered cheaper, recursion may be terminated
after partitioning.

Additionally, in one embodiment, a top down cache strat-
egy may be implemented in association with the partition
cache memory. For example, based on the “node_id” in Table
1, data may be stored in the partition cache for “node_id<N.”
Inthis way, an upper part of an implicit tree used in the divide
and conquer method may be cached in the partition cache
memory. In another embodiment, all cache operations may be
performed in constant time.

Table 2 illustrates an exemplary top down cache to store
partitioning data for the top levels of an implicit hierarchy. Of
course, it should be noted that the cache shown in Table 2 is
set forth for illustrative purposes only, and thus should not be
construed as limiting in any manner.

TABLE 2

insert_into_td_cache(key, value) {
if (key < max_size) values(key) < value;

is_in_td_cache(key) {
return (key < max_size) A (values(key) = 0);

get_from_td_cache(key, value) {
return values(key);

Further, in one embodiment, a priority cache strategy may
be implemented in association with the partition cache
memory. For example, N elements with the highest priority
may be stored in the partition cache, and priority may be
based on an amount of work required for recalculation. In
another example, insert operations may work on a priority
queue and may be implemented as a van Emde Boas tree,
which may be accomplished in O(log log N). In another
embodiment, lookups may be performed in O(log log N) by
an additional key hash map.

Further still, in one embodiment, small performance
improvements that may cause unnecessary cache operations
may be avoided if only elements with a priority greater by a
factor k than the smallest currently stored priority are
inserted. In another embodiment, a lower priority threshold

35

40

45

50

6

for stored elements may be set. In yet another embodiment,
the priority queue may be stored in reverse order (e.g., the top
element in the queue is the element with the lowest priority,
etc.).

Table 3 illustrates an exemplary top down cache to store
partitioning data by its cost of computation. Of course, it
should be noted that the cache shown in Table 3 is set forth for
illustrative purposes only, and thus should notbe construed as
limiting in any manner.

TABLE 3

insert_into_priority_cache(key, value, priority) {
if (priority= min_priority) {
if ((priority > k - priority_queue.top().priority) v
(Ivalues| < max_cache_size)) {
if (Ivalues| = max_cache_size) {
values(priority_queue.top().key) < &
priority_queue.pop();

values(key) < value;
priority_queue.push(priority, key);
¥
}
is_in_priority_cache(key, priority) {
return (priority = priority_queue.top().priorty) A (values(key) = 0);

get_from_priority_cache(key, value, priority) {
return values(key);
¥

Also, in one embodiment, with respect to instances and
procedural geometry that is generated on demand, the divide
and conquer ray tracing may be applied hierarchically. In
another embodiment, in order to avoid further redundant par-
titioning, instances with common geometry may allocate
their own common partition cache. In yet another embodi-
ment, an LRU strategy may be applied to cope with the
procedural generation of geometry (including recursive
instancing, etc.). Upon eviction, evicted cache content may be
stored on secondary storage. In still another embodiment,
partition caches may be attached to any node of the traversal
hierarchy. This application may be beneficial in cases where
the total amount of geometry cannot be efficiently predicted
(e.g., because it is procedural or includes instances, etc.).

Additionally, in one embodiment, the partition cache and
its extensions may be applied in hierarchical occlusion cull-
ing. For example, a hierarchical traversal guided by the
ensemble of rays implied by the raster structure of for
example the screen or a shadow map, may increase the effi-
ciency of rasterization by early-out testing with respect to
z-buffering. This may emphasize that rasterization is a special
case of divide-and-conquer ray tracing.

Further, in one embodiment, the ray tracing may include
scheduling rays using the faces of voxels of an octree. See, for
example, “Ray Tracing mit Strahlbiindeln” (B. Frohlich, PhD
thesis, Naturwissenschaftliche Fakultat der Technischen Uni-
versitdt Carolo-Wilhelmina zu Braunschweig, 1993) or
“Improving data locality for efficient in-core path tracing” (J.
Bikker, Computer Graphics Forum, Volume 31, Issue 6,
pages 1936-1947, September 2012), which are hereby incor-
porated by reference in its entirety. In another example, rays
leaving the same face may be queued in same queues, which
may increase processor cache efficiency by exploiting the
coherence of rays with similar directions traversing similar
locations in space. As opposed to precomputed auxiliary
acceleration data structures, divide-and-conquer ray tracing
may incorporate the current ray distribution by not partition-
ing space where rays and geometry do not intersect. In

US 9,117,254 B2

7

another embodiment, cache coherence can be increased by
adapting traversal order according to ray directions.

For example, in divide-and-conquer ray tracing, one tra-
versal order may be selected for a set of rays. Instead of
deciding the order by the majority of signs of a selected
component of the ray direction, which may be known as ray
democracy, the sign of a selected component of the average
direction of all active rays may be selected. This heuristic may
improve the performance as compared to counting signs. In
another example, rays also may be queued by the octant of
their direction or the major axis and its sign. Then the number
of queues may determine the maximum number of accesses
to a voxel of the scene for one set of rays.

In this way, caching of data obtained during partitioning of
primitive data may result in improved performance. Where
such performance may increase with primitive data size and
path length as data transfer is reduced. Furthermore, for
smaller ray batches the performance gain may increase, as the
method without caching may become less and less efficient
and data may be sorted and recalculated all over again.
Depending on the size of the cache, the performance of the
cached variant may degrade to an acceptable degree, which
may be important for longer paths and adaptive methods.

Additionally, the cached variant may benefit even more
from reordering, as for large parts of the implicit hierarchy all
required data may be retrieved from the first levels of a CPU
cache. Compared to approaches that store the full accelera-
tion structure, the hierarchical data may be built on demand
and the amount of memory may be fixed. Partitions without
any information in the partition cache may require re-pro-
cessing of children bounding volumes and split indices; how-
ever, the amount of work may be minimized by the priority
order. More importantly, for these partitions processor caches
may be exploited efficiently due to the cache oblivious nature
of the divide-and-conquer method.

FIG. 3 illustrates an exemplary system 300 in which the
various architecture and/or functionality of the various pre-
vious embodiments may be implemented. As shown, a sys-
tem 300 is provided including at least one host processor 301
which is connected to a communication bus 302. The system
300 also includes a main memory 304. Control logic (soft-
ware) and data are stored in the main memory 304 which may
take the form of random access memory (RAM).

The system 300 also includes a graphics processor 306 and
a display 308, i.e. a computer monitor. In one embodiment,
the graphics processor 306 may include a plurality of shader
modules, a rasterization module, etc. Each of the foregoing
modules may even be situated on a single semiconductor
platform to form a graphics processing unit (GPU).

In the present description, a single semiconductor platform
may refer to a sole unitary semiconductor-based integrated
circuit or chip. It should be noted that the term single semi-
conductor platform may also refer to multi-chip modules with
increased connectivity which simulate on-chip operation, and
make substantial improvements over utilizing a conventional
central processing unit (CPU) and bus implementation. Of
course, the various modules may also be situated separately
or in various combinations of semiconductor platforms per
the desires of the user. The system may also be realized by
reconfigurable logic which may include (but is not restricted
to) field programmable gate arrays (FPGAs).

The system 300 may also include a secondary storage 310.
The secondary storage 310 includes, for example, a hard disk
drive and/or a removable storage drive, representing a floppy
disk drive, a magnetic tape drive, a compact disk drive, etc.
The removable storage drive reads from and/or writes to a
removable storage unit in a well known manner.

20

30

35

40

45

8

Computer programs, or computer control logic algorithms,
may be stored in the main memory 304 and/or the secondary
storage 310. Such computer programs, when executed,
enable the system 300 to perform various functions. Memory
304, storage 310 and/or any other storage are possible
examples of computer-readable media.

In one embodiment, the architecture and/or functionality
of the various previous figures may be implemented in the
context of the host processor 301, graphics processor 306, an
integrated circuit (not shown) that is capable of at least a
portion of the capabilities of both the host processor 301 and
the graphics processor 306, a chipset a group of integrated
circuits designed to work and sold as a unit for performing
related functions, etc.), and/or any other integrated circuit for
that matter.

Still yet, the architecture and/or functionality of the various
previous figures may be implemented in the context of a
general computer system, a circuit board system, a game
console system dedicated for entertainment purposes, an
application-specific system, and/or any other desired system.
For example, the system 300 may take the form of a desktop
computer, laptop computer, and/or any other type of logic.
Still yet, the system 300 may take the form of various other
devices m including, but not limited to a personal digital
assistant (PDA) device, a mobile phone device, a television,
etc.

Further, while not shown, the system 300 may be coupled
to a network [e.g. a telecommunications network, local area
network (LAN), wireless network, wide area network (WAN)
such as the Internet, peer-to-peer network, cable network,
etc.) for communication purposes.

While various embodiments have been described above, it
should be understood that they have been presented by way of
example only, and not limitation. Thus, the breadth and scope
of'a preferred embodiment should not be limited by any ofthe
above-described exemplary embodiments, but should be
defined only in accordance with the following claims and
their equivalents.

What is claimed is:

1. A method performed by a computer system, comprising:

performing ray tracing, including:

partitioning a space to create a plurality of partitions,

for each of the plurality of partitions, associating the
partition with a priority, based on an amount of pro-
cessing required to recalculate the partition utilizing a
divide and conquer method,

storing a predetermined number of the plurality of par-
titions in a cache, based on the priority, and

performing the ray tracing, utilizing the plurality of par-
titions.

2. The method of claim 1, wherein performing ray tracing
utilizing the divide and conquer method includes partitioning
an object list.

3. The method of claim 1, wherein the partitioning is per-
formed utilizing one or more of a surfaces area heuristic, a
median split, a split by a global heuristic, and a split by a
selected plane defined by an offset and a normal.

4. The method of claim 1, wherein performing ray tracing
utilizing the divide and conquer method includes culling one
or more of the partitions.

5. The method of claim 1, wherein performing ray tracing
utilizing the divide and conquer method includes performing
partitioning in a recursive manner.

6. The method of claim 1, wherein performing ray tracing
utilizing the divide and conquer method includes tracing a
selected number of rays through a selected number of objects

US 9,117,254 B2

9

by recursively partitioning at least one of a space or an object
list to create one or more partitions, and culling away the one
or more partitions from rays.

7. The method of claim 1, wherein the cache stores one or
more levels of a full hierarchy of partitions created by the
partitioning.

8. The method of claim 1, wherein the cache stores one or
more partitions based on recalculation times associated with
the partitions.

9. The method of claim 1, wherein the ray tracing is per-
formed utilizing a directed acyclic scene graph.

10. The method of claim 9, wherein a plurality of caches
are associated with multiple referenced nodes in the directed
acyclic scene graph, such that each multiple referenced node
in the directed acyclic scene graph has its own distinct cache.

11. The method of claim 1, wherein the divide and conquer
method is used for hierarchical occlusion culling during a
rasterization.

12. The method of claim 1, wherein a traversal order is
determined in association with the ray tracing utilizing the
divide and conquer method, where the traversal order is deter-
mined by one or more of ray democracy, averaged ray direc-
tions, and quantized ray directions.

13. A computer program product embodied on a non-tran-
sitory computer readable medium, comprising code for:

10

15

20

10
performing ray tracing, including:
partitioning a space to create a plurality of partitions,
for each of the plurality of partitions, associating the
partition with a priority, based on an amount of pro-
cessing required to recalculate the partition utilizing a
divide and conquer method,
storing a predetermined number of the plurality of par-
titions in a cache, based on the priority, and
performing the ray tracing, utilizing the plurality of par-
titions.
14. A system, comprising:
a processor for:
performing ray tracing, including:
partitioning a space to create a plurality of partitions,
for each of the plurality of partitions, associating the
partition with a priority, based on an amount of pro-
cessing required to recalculate the partition utilizing a
divide and conquer method,
storing a predetermined number of the plurality of par-
titions in a cache, based on the priority, and
performing the ray tracing, utilizing the plurality of par-
titions.
15. The system of claim 14, wherein the processor is
coupled to memory via a bus.

#* #* #* #* #*

